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Abstract: This paper empirically evaluates four meta-heuristic search techniques namely particle swarm 
optimization, artificial bee colony algorithm, Genetic Algorithm and Big Bang Big Crunch Algorithm for 
automatic test data generation for procedure oriented programs using structural symbolic testing method. Test 
data is generated for each feasible path of the programs. Experiments on ten benchmark programs of varying 
sizes and complexities are conducted and the subsequent performance results are presented. All the four 
algorithms have been evaluated on average test cases per path and average percentage coverage per path. It has 
been observed that the particle swarm optimization based algorithm outperforms the other three algorithms. The 
result also concludes that predicates solving difficulty (such as constraints having equality operator‘&&’ as join 
operator) has a direct relationship with testing efforts rather than program complexity measures such as 
cyclomatic complexity, number of decision nodes etc. 
Keyword: Software testing, Symbolic execution, Genetic Algorithm, Swarm Intelligence, Particle Swarm 
optimization, Artificial Bee Colony algorithm, Big Bang Big Crunch Algorithm.  
 
1. Introduction 
Although manual generation of test cases is relatively easy but it is a slow and costly process. Automatic 
generation of test cases can save time and testing resources. At the same time, it is also free from human biases 
and doesn’t require special team of testers other than the developers. Despite having so many benefits, 
automated test case generation is not so easy because it requires intelligence of human mind to identify the non-
linearity and discreteness in test inputs’ search space. For improving the quality of automation and fulfilling the 
requirements of test case generation, many researchers have explored new soft computing based techniques such 
as genetic algorithm, simulated annealing, tabu search, ant colony optimization, particle swarm optimization, 
memetic algorithms etc. to fulfill testing requirement and to generate suitable test cases automatically [1,2].  

 

2. Software testing using population based approaches   
Search techniques are applied for generation of test data by transforming testing objective into search problem. 
Two components are essential for a problem which is to be modeled as search target. First a mechanism should 
be derived through which the problem is encoded in search algorithm and second component is assessment of 
the suitability of solutions produced by search technique to guide the individuals for exploring search space. The 
population based metaheuristic search algorithm where global population represents every possible solutions 
and global search space, are frequently applied in applications where search space is very large.Each member of 
population is called an individual or a probable solution which is evaluated for its fitness so that new and better 
individual(s) may be generated. This process is iterated in algorithm till the search stopping criterion is met. 
Population based search algorithm-workflowsare comparatively depicted in Table 1.  
For software testing purpose, as solution lies in searching inputs, every possible set of inputs represent the 
global populationin search algorithm and selected inputs from this global set are represented by individuals in 
the population.Suitability of the individuals can be assessed by following a testing criterion for which a unique 
fitness function has to be defined. In structural testing, these criteria can be anything from all-statement-
execution to all-path-coverage [3]. The all-path coverage criterion has been chosen for experimentation because 
of its being the hardest one to follow and in true sense, it is the real representative of structural testing. The 
pathtesting method involves generation of test data for a target feasible path in such a way that on executing 
program, it covers all branches on that path. To cover a particular branch, the condition(s) at branch node must 
be satisfied by the test data, which directs the control flow of program to the next branch of the path. A path 
may contain several branches and in order to execute that path, all these branch-conditions must be evaluated 
true by the test data. Consequently, problem of path testing can be formulated simply as constraint satisfaction 
problem which should be analyzed and solved with the help of some search method by generating inputs in such 
a way that can satisfy all the branch constraints on the path. A valid test case is generated, which should execute 
the particular path by satisfying all of the boolean expressions included in that path. Figure 2 shows the different 
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building blocks of a path based automatic test data generator. First test object source code is fed to program 
instrumentation for CFG and node expressions generation. Subsequently CFG is used to generate all possible 
paths which are filtered manually for feasible path in order to become input to search algorithm. Node 
expressions include branch node predicates as well as non-branch node statements which are used to evaluate 
candidate solutions in test object fitness functions. 

Table 1. Comparative Chart of algorithm showing population based algorithms 
1. Generate the M 
number of solution 
string known as 
parent population 
2. Evaluate fitness to 
each of the solution 
3. Select some of the 
best fit chromosomes 
from parent 
population according 
some selection 
criteria 
4. Crossover partial 
solution between pair 
of selected solution 
with some probability 
value to generate 
child population. 
5. Change the value of 
an allele of child with 
some small 
probability value 
6. Evaluate child 
population and 
replace parent 
population  
Go to step 3 and 
repeat the process 
until termination 
criteria satisfies 

1:Initialize the random population of 
solutions  (flower patch positions) 

2: Evaluate the population 
3: Produce new solutions in the 

neighborhood of for the employed 

bees by using following equation. 
--------(1) 

     Where   is a random number 

between 0 to 1 and is a randomly 

selected solution. 
4: Apply the greedy selection process 
between and . 

5: Calculate the probability values for 

the solutions  by means of their fitness 

values, 
-----------------------(2) 

6: Produce new solutions (new 
positions) for the onlookers from the 
solutions  depending on probability  

and evaluate them. 
7: Apply the greedy selection process 
between new and old solution 
8: Determine the abandoned solution 
(source), if exists, and replace it with a 
new randomly produced solution for the 
scout.  
9: Memorize the best food source position 
(solution) achieved so far 
10: Repeat step 3 to 9 until stopping 
criterion is reached 

1. Initialize the particle 
population by 
randomly assigning 
locations (X-vector 
for each particle) 
and velocities (V-
vector with random 
or zero velocities- in 
our case it is 
initialized with zero 
vector)  

2. Evaluate the fitness 
of the individual 
particle and record 
the best fitness Pbest 
for each particle till 
now and update P-
vector related to 
each Pbest. 

3. Also find out the 
individuals’ highest 
fitness Gbestand 
record 
corresponding 
position pg. 

4. Modify velocities 
based on Pbest and 
Gbest position using 
eq3.   

5. Update the particles 
position using eq4. 

6. Terminate if the 
condition is met  

7. Go to Step 2 

1. Create random 
population of 
solution. 

2. Evaluate 
Solutions. 

3. The fittest 
individual can 
be selected as 
the center of 
mass. 

4. Calculate new 
candidates 
around the 
center of mass 
by adding or 
subtracting a 
normal 
random 
number whose 
value 
decreases as 
the iterations 
elapse. 

5. The algorithm 
continues until 
predefined 
stopping 
criteria has 
been met 

GA Algorithm ABC Algorithm PSO Algorithm BBBC 
Algorithm 

 

3. Fitness Function Design for symbolic path testing  
In path testing approach a candidate solution (also called an individual) is used to evaluate constraint system of 
the target path. This evaluation can be dynamic as well as static. In dynamic analysis, a program is actually 
executed with values of the inputs and then fitness function determines the extent up to which it has satisfied the 
testing criterion, which becomes the fitness of the individual. On the other hand, static testing does not require 
the actual execution of program, but it symbolically executes a testing path as identified from CFG of program 
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by using symbols instead of actual values. Symbols are replaced for variables in predicates or constraints of the 
entire target path and then this resultant constraint system is evaluated for fitness.  
 

Table 2. Fitness function of a branch predicate 
Violated 
individual 
predicate  

Penalty to be imposed in 
case predicate is not 
satisfied 

Violated 
individual 
predicate 

Penalty to be imposed in 
case predicate is not satisfied 

A < B  A – B + � A >= B B – A  
A <= B A – B  A = B Abs(A – B) 
A > B  B – A + � A � B � – abs(A – B) 
A and B are operands and � is a smallest constant of operands’ universal domains. In case integer it is 
1 and in case real values it can be 0.1 or 0.01 depending on the accuracy we need in solution. 

 
The extent up to which this constraint system is satisfied by the individual determines its fitness. This constraint 
system is also called composite predicate (CP).If CP is not evaluated to be true by an individual then all the 
constraints of a particular path are broken upin distinct predicates (DP).A distinct predicate is the one, which 
contains only one operator (a constraint with modulus operator is exception). Each DP is evaluated by taking 
values of its operands from candidate solution. If it is evaluated to be true then no penalty is imposed to 
candidate solution, otherwise candidate solution is penalized on the basis of branch distance concept rules as 
shown in table 1. This method avoids premature convergence problem in GA optimization and has been already 
used by several researchers [4,5]. Ahmed et al [6] have proposed several techniques such as normalization, 
weighting and rewarding schemes for making fitness function effective and useful. Watkins et al [7] compared 
many fitness function construction techniques and concluded through their experiments that branch-distance 
based function is best performer in the static structural testing category. Algorithm for fitness function is given 
in Table 3. 

Table 3. Fitness function used for symbolic testing 
For each individual in population 
 Assign input variables values from individual. 
 For each node in target path of CFG 
  If node is non-branch node 
   Execute all the statements related to that node; 

Else 
   Find the predicate of branch node. 
   Find the traversal link to next node in target path from CFG matrix.  
   If traversal link is for false execution of branch predicate 
    Then simplify predicate for negation. 
   End 

If simplified predicate is evaluated true by the individual  
    Then continue without any penalty to individual solution 

Else 
    Extract distinct predicates from combined branch predicate. 
    For each distinct predicate 
     If distinct predicate is evaluated true by individual  
      Then assign zero penalty corresponding to that distinct 
predicate 
     Else 

Determine Penalty w.r.t. distinct predicate by following 
the concept for branch distance function given in table1. 

End 
    End  

Replace each distinct predicate with its corresponding penalty in composite 
predicate. 
End  
Replace each ‘&&’ symbol with plus (+) sign and ‘||’ symbol with comma (,) sign 
and each bracket ‘(‘ with min([ in branch predicate to determine fitness related to 
the combined node predicate.  

  End  
Add fitness of each branch node predicate to determine the fitness for whole individual. 
End 

End 
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4. Experimental Setup and Results 
The algorithms are implemented using MATLAB programming environment. The performance of the 
algorithms is measured using average test cases generated per path (ATCPP) and average percentage coverage 
(APC) metrics. Experiment is conducted 10 times for averaging results. In each attempt, BBBC is iterated for 
100 generations for each of 10 runs. In each run, except for the first run, first-generation population is seeded 
with the best solution from the previous run. This is done to check premature convergence of population. Total 
number of real encoded individuals in each population is 30. If a solution is not found within all runs that 
generates total 30,000 invalid test cases then it is declared that the test case generation has failed for that 
particular attempt. This value has been obtained by multiplying total number of runs, generations and number of 
individual in each population. An invalid test case is a solution, which does not qualify to become a test case. 
Ten real world programs for test data generation activityhave been selected. Some of these are frequently used 
by researchers. These are called test objects here and brief explanation for each test object is given below.Detail 
characteristics of these test objects are given in table 4. 

Table 4. Test Object characteristics 

 
5. Results and Discussions 
Table 5 presents the experimental results. From the table, it can be easily deduced that PSO has performed 
consistently better than other two search algorithms. It has generated less ATCPP as compared to GA and ABC. 
It has covered all paths in every attempt for each test object barring binary search program. Manual analysis by 
us has found that in this case problem is not with search algorithm but inability of handling of index value zero 
by MATLAB. Due to this those paths which require such test cases where middle index calculation should 
result into having a value zero could not be covered by experiments. If we remove such paths from the category 
of feasible path then APC in PSO is more than 90 percent. Hence we can say that PSO is a good search 
algorithm for fulfilling the testing requirement.  

Table 5. Experimental results 
Name of Program GA ABC PSO BBBC 

 ATCPP APC ATCPP APC ATCPP APC ATCPP APC 

TC (small Domain) 1696 100 6197 85.71 187 100 829 100% 
TC (Large Domain) 5382 87.14 17156 42.86 2337 100 7564 83.32% 
LRC (small Domain) 1171 100 1255 100 275 100 2543 97.23% 
LRC (Large Domain) 11495 62.53 3924 89.06 607 100 11765 74.42% 

DBTD 2564 87.70 206 100 202 100 378 100 
A2F 2341 100 3195 100 898 100 5743 100 
BS 14289 56.61 15545 51.94 9343 75.32 28021 47.83 

REM 524 100 970 100 518 100 1652 100 
BUB 154 100 258 100 54 100 413 100 

QUAD 15211 75 1930 100 1136 100 2247 100 
MINMAX 973 100 619 100 225 100 721 100 
ISPRIME 477 100 52 100 30 100 47 100 

 
If we analyze the performance of ABC and BBBC then we can say that both compete with each other for 
performance but these are not anywhere near to GA and PSO for test data generation activity. BBBC performs 
worst in satisfying equality constraints based branch predicates especiallywhen inputs’ domains are large.  

Name of 
Program 

Lines of 
Code 

Cyclomatic 
Complexity 

Number of 
Decision 

Nodes 

Highest 
Nesting 
Level 

Total 
Paths in 

CFG 

Feasible 
Paths 

TC 35 07 06 05 07 07 
LRC 56 19 18 12 17 17 

DBTD 123 26 22 05 1643 566 
A2F 48 15 14 07 910 568 
BS 23 05 04 03 124 62 

REM 35 10 8 04 22 22 
BUB 21 04 03 03 121 31 

QUAD 24 06 05 03 06 06 
MINMAX 27 04 03 03 121 121 
ISPRIME 16 03 02 02 10 08 
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 Table 6. Correlation between testing efforts(ATCPP) and various parameters of programs 

 
Another interesting observation can be made by comparing test objects’ characteristics and testing efforts made 
by search techniques. The figures in table 4, 5 and 6 give the impression that predicates solving difficulty(such 
as constraints having equality operatoror‘&&’ as join operator) has a direct relationship with testing efforts 
rather than program complexity measures such as cyclomatic complexity, number of decision nodes etc. but the 
statement needs more experimentation before generalization.  

6. Conclusion 
We have compared four heuristic based techniques BBBC, ABC, PSO and GA for automatic test case 
generation using path testing criterion. For generation of test cases, symbolic execution method has been used in 
which first, target path is selected from CFG of SUT and then inputs are generated using search algorithms 
which can evaluate composite predicate corresponding to the target path true. We have experimented on ten real 
world programs showing the applicability of swarm intelligence techniques in genuine testing environment. 
PSO method has given excellent results for each test object except binary search method however it still 
outperforms other two methods. PSO’s performance in small as well as large domains shows that it has both 
type of search capabilities; local as well as global for fulfilling testing requirements. Hence, it has been observed 
to be ideally suited for test case generation problem. A direct relationship between number of equality 
constraints and testing efforts has been identified. 
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