
International Journal of Information Technology and Knowledge Management (ISSN: 0973-4414)
July-December 2012, Volume 5, No. 2, pp. 489-493

 489

Empirical Evaluation of Metaheuristic
Approaches for Symbolic Execution based

Automated Test Generation
Surender Singh[1], Parvin Kumar[2]

[1]CMJ University, Shillong, Meghalya, (INDIA)
[2]Meerut Institute of Science & Technology, Meerut, UP (INDIA)

surendahiya@gmail.com, pk223475@yahoo.com

Abstract: This paper empirically evaluates four meta-heuristic search techniques namely particle swarm
optimization, artificial bee colony algorithm, Genetic Algorithm and Big Bang Big Crunch Algorithm for
automatic test data generation for procedure oriented programs using structural symbolic testing method. Test
data is generated for each feasible path of the programs. Experiments on ten benchmark programs of varying
sizes and complexities are conducted and the subsequent performance results are presented. All the four
algorithms have been evaluated on average test cases per path and average percentage coverage per path. It has
been observed that the particle swarm optimization based algorithm outperforms the other three algorithms. The
result also concludes that predicates solving difficulty (such as constraints having equality operator‘&&’ as join
operator) has a direct relationship with testing efforts rather than program complexity measures such as
cyclomatic complexity, number of decision nodes etc.
Keyword: Software testing, Symbolic execution, Genetic Algorithm, Swarm Intelligence, Particle Swarm
optimization, Artificial Bee Colony algorithm, Big Bang Big Crunch Algorithm.

1. Introduction
Although manual generation of test cases is relatively easy but it is a slow and costly process. Automatic
generation of test cases can save time and testing resources. At the same time, it is also free from human biases
and doesn’t require special team of testers other than the developers. Despite having so many benefits,
automated test case generation is not so easy because it requires intelligence of human mind to identify the non-
linearity and discreteness in test inputs’ search space. For improving the quality of automation and fulfilling the
requirements of test case generation, many researchers have explored new soft computing based techniques such
as genetic algorithm, simulated annealing, tabu search, ant colony optimization, particle swarm optimization,
memetic algorithms etc. to fulfill testing requirement and to generate suitable test cases automatically [1,2].

2. Software testing using population based approaches
Search techniques are applied for generation of test data by transforming testing objective into search problem.
Two components are essential for a problem which is to be modeled as search target. First a mechanism should
be derived through which the problem is encoded in search algorithm and second component is assessment of
the suitability of solutions produced by search technique to guide the individuals for exploring search space. The
population based metaheuristic search algorithm where global population represents every possible solutions
and global search space, are frequently applied in applications where search space is very large.Each member of
population is called an individual or a probable solution which is evaluated for its fitness so that new and better
individual(s) may be generated. This process is iterated in algorithm till the search stopping criterion is met.
Population based search algorithm-workflowsare comparatively depicted in Table 1.
For software testing purpose, as solution lies in searching inputs, every possible set of inputs represent the
global populationin search algorithm and selected inputs from this global set are represented by individuals in
the population.Suitability of the individuals can be assessed by following a testing criterion for which a unique
fitness function has to be defined. In structural testing, these criteria can be anything from all-statement-
execution to all-path-coverage [3]. The all-path coverage criterion has been chosen for experimentation because
of its being the hardest one to follow and in true sense, it is the real representative of structural testing. The
pathtesting method involves generation of test data for a target feasible path in such a way that on executing
program, it covers all branches on that path. To cover a particular branch, the condition(s) at branch node must
be satisfied by the test data, which directs the control flow of program to the next branch of the path. A path
may contain several branches and in order to execute that path, all these branch-conditions must be evaluated
true by the test data. Consequently, problem of path testing can be formulated simply as constraint satisfaction
problem which should be analyzed and solved with the help of some search method by generating inputs in such
a way that can satisfy all the branch constraints on the path. A valid test case is generated, which should execute
the particular path by satisfying all of the boolean expressions included in that path. Figure 2 shows the different

International Journal of Information Technology and Knowledge Management (ISSN: 0973-4414)
July-December 2012, Volume 5, No. 2, pp. 489-493

 490

building blocks of a path based automatic test data generator. First test object source code is fed to program
instrumentation for CFG and node expressions generation. Subsequently CFG is used to generate all possible
paths which are filtered manually for feasible path in order to become input to search algorithm. Node
expressions include branch node predicates as well as non-branch node statements which are used to evaluate
candidate solutions in test object fitness functions.

Table 1. Comparative Chart of algorithm showing population based algorithms
1. Generate the M
number of solution
string known as
parent population
2. Evaluate fitness to
each of the solution
3. Select some of the
best fit chromosomes
from parent
population according
some selection
criteria
4. Crossover partial
solution between pair
of selected solution
with some probability
value to generate
child population.
5. Change the value of
an allele of child with
some small
probability value
6. Evaluate child
population and
replace parent
population
Go to step 3 and
repeat the process
until termination
criteria satisfies

1:Initialize the random population of
solutions (flower patch positions)

2: Evaluate the population
3: Produce new solutions in the

neighborhood of for the employed

bees by using following equation.
--------(1)

 Where is a random number

between 0 to 1 and is a randomly

selected solution.
4: Apply the greedy selection process
between and .

5: Calculate the probability values for

the solutions by means of their fitness

values,
-----------------------(2)

6: Produce new solutions (new
positions) for the onlookers from the
solutions depending on probability

and evaluate them.
7: Apply the greedy selection process
between new and old solution
8: Determine the abandoned solution
(source), if exists, and replace it with a
new randomly produced solution for the
scout.
9: Memorize the best food source position
(solution) achieved so far
10: Repeat step 3 to 9 until stopping
criterion is reached

1. Initialize the particle
population by
randomly assigning
locations (X-vector
for each particle)
and velocities (V-
vector with random
or zero velocities- in
our case it is
initialized with zero
vector)

2. Evaluate the fitness
of the individual
particle and record
the best fitness Pbest
for each particle till
now and update P-
vector related to
each Pbest.

3. Also find out the
individuals’ highest
fitness Gbestand
record
corresponding
position pg.

4. Modify velocities
based on Pbest and
Gbest position using
eq3.

5. Update the particles
position using eq4.

6. Terminate if the
condition is met

7. Go to Step 2

1. Create random
population of
solution.

2. Evaluate
Solutions.

3. The fittest
individual can
be selected as
the center of
mass.

4. Calculate new
candidates
around the
center of mass
by adding or
subtracting a
normal
random
number whose
value
decreases as
the iterations
elapse.

5. The algorithm
continues until
predefined
stopping
criteria has
been met

GA Algorithm ABC Algorithm PSO Algorithm BBBC
Algorithm

3. Fitness Function Design for symbolic path testing
In path testing approach a candidate solution (also called an individual) is used to evaluate constraint system of
the target path. This evaluation can be dynamic as well as static. In dynamic analysis, a program is actually
executed with values of the inputs and then fitness function determines the extent up to which it has satisfied the
testing criterion, which becomes the fitness of the individual. On the other hand, static testing does not require
the actual execution of program, but it symbolically executes a testing path as identified from CFG of program

International Journal of Information Technology and Knowledge Management (ISSN: 0973-4414)
July-December 2012, Volume 5, No. 2, pp. 489-493

 491

by using symbols instead of actual values. Symbols are replaced for variables in predicates or constraints of the
entire target path and then this resultant constraint system is evaluated for fitness.

Table 2. Fitness function of a branch predicate
Violated
individual
predicate

Penalty to be imposed in
case predicate is not
satisfied

Violated
individual
predicate

Penalty to be imposed in
case predicate is not satisfied

A < B A – B + � A >= B B – A
A <= B A – B A = B Abs(A – B)
A > B B – A + � A � B � – abs(A – B)
A and B are operands and � is a smallest constant of operands’ universal domains. In case integer it is
1 and in case real values it can be 0.1 or 0.01 depending on the accuracy we need in solution.

The extent up to which this constraint system is satisfied by the individual determines its fitness. This constraint
system is also called composite predicate (CP).If CP is not evaluated to be true by an individual then all the
constraints of a particular path are broken upin distinct predicates (DP).A distinct predicate is the one, which
contains only one operator (a constraint with modulus operator is exception). Each DP is evaluated by taking
values of its operands from candidate solution. If it is evaluated to be true then no penalty is imposed to
candidate solution, otherwise candidate solution is penalized on the basis of branch distance concept rules as
shown in table 1. This method avoids premature convergence problem in GA optimization and has been already
used by several researchers [4,5]. Ahmed et al [6] have proposed several techniques such as normalization,
weighting and rewarding schemes for making fitness function effective and useful. Watkins et al [7] compared
many fitness function construction techniques and concluded through their experiments that branch-distance
based function is best performer in the static structural testing category. Algorithm for fitness function is given
in Table 3.

Table 3. Fitness function used for symbolic testing
For each individual in population
 Assign input variables values from individual.
 For each node in target path of CFG
 If node is non-branch node
 Execute all the statements related to that node;

Else
 Find the predicate of branch node.
 Find the traversal link to next node in target path from CFG matrix.
 If traversal link is for false execution of branch predicate
 Then simplify predicate for negation.
 End

If simplified predicate is evaluated true by the individual
 Then continue without any penalty to individual solution

Else
 Extract distinct predicates from combined branch predicate.
 For each distinct predicate
 If distinct predicate is evaluated true by individual
 Then assign zero penalty corresponding to that distinct
predicate
 Else

Determine Penalty w.r.t. distinct predicate by following
the concept for branch distance function given in table1.

End
 End

Replace each distinct predicate with its corresponding penalty in composite
predicate.
End
Replace each ‘&&’ symbol with plus (+) sign and ‘||’ symbol with comma (,) sign
and each bracket ‘(‘ with min([in branch predicate to determine fitness related to
the combined node predicate.

 End
Add fitness of each branch node predicate to determine the fitness for whole individual.
End

End

International Journal of Information Technology and Knowledge Management (ISSN: 0973-4414)
July-December 2012, Volume 5, No. 2, pp. 489-493

 492

4. Experimental Setup and Results
The algorithms are implemented using MATLAB programming environment. The performance of the
algorithms is measured using average test cases generated per path (ATCPP) and average percentage coverage
(APC) metrics. Experiment is conducted 10 times for averaging results. In each attempt, BBBC is iterated for
100 generations for each of 10 runs. In each run, except for the first run, first-generation population is seeded
with the best solution from the previous run. This is done to check premature convergence of population. Total
number of real encoded individuals in each population is 30. If a solution is not found within all runs that
generates total 30,000 invalid test cases then it is declared that the test case generation has failed for that
particular attempt. This value has been obtained by multiplying total number of runs, generations and number of
individual in each population. An invalid test case is a solution, which does not qualify to become a test case.
Ten real world programs for test data generation activityhave been selected. Some of these are frequently used
by researchers. These are called test objects here and brief explanation for each test object is given below.Detail
characteristics of these test objects are given in table 4.

Table 4. Test Object characteristics

5. Results and Discussions
Table 5 presents the experimental results. From the table, it can be easily deduced that PSO has performed
consistently better than other two search algorithms. It has generated less ATCPP as compared to GA and ABC.
It has covered all paths in every attempt for each test object barring binary search program. Manual analysis by
us has found that in this case problem is not with search algorithm but inability of handling of index value zero
by MATLAB. Due to this those paths which require such test cases where middle index calculation should
result into having a value zero could not be covered by experiments. If we remove such paths from the category
of feasible path then APC in PSO is more than 90 percent. Hence we can say that PSO is a good search
algorithm for fulfilling the testing requirement.

Table 5. Experimental results
Name of Program GA ABC PSO BBBC

 ATCPP APC ATCPP APC ATCPP APC ATCPP APC

TC (small Domain) 1696 100 6197 85.71 187 100 829 100%
TC (Large Domain) 5382 87.14 17156 42.86 2337 100 7564 83.32%
LRC (small Domain) 1171 100 1255 100 275 100 2543 97.23%
LRC (Large Domain) 11495 62.53 3924 89.06 607 100 11765 74.42%

DBTD 2564 87.70 206 100 202 100 378 100
A2F 2341 100 3195 100 898 100 5743 100
BS 14289 56.61 15545 51.94 9343 75.32 28021 47.83

REM 524 100 970 100 518 100 1652 100
BUB 154 100 258 100 54 100 413 100

QUAD 15211 75 1930 100 1136 100 2247 100
MINMAX 973 100 619 100 225 100 721 100
ISPRIME 477 100 52 100 30 100 47 100

If we analyze the performance of ABC and BBBC then we can say that both compete with each other for
performance but these are not anywhere near to GA and PSO for test data generation activity. BBBC performs
worst in satisfying equality constraints based branch predicates especiallywhen inputs’ domains are large.

Name of
Program

Lines of
Code

Cyclomatic
Complexity

Number of
Decision

Nodes

Highest
Nesting
Level

Total
Paths in

CFG

Feasible
Paths

TC 35 07 06 05 07 07
LRC 56 19 18 12 17 17

DBTD 123 26 22 05 1643 566
A2F 48 15 14 07 910 568
BS 23 05 04 03 124 62

REM 35 10 8 04 22 22
BUB 21 04 03 03 121 31

QUAD 24 06 05 03 06 06
MINMAX 27 04 03 03 121 121
ISPRIME 16 03 02 02 10 08

International Journal of Information Technology and Knowledge Management (ISSN: 0973-4414)
July-December 2012, Volume 5, No. 2, pp. 489-493

 493

 Table 6. Correlation between testing efforts(ATCPP) and various parameters of programs

Another interesting observation can be made by comparing test objects’ characteristics and testing efforts made
by search techniques. The figures in table 4, 5 and 6 give the impression that predicates solving difficulty(such
as constraints having equality operatoror‘&&’ as join operator) has a direct relationship with testing efforts
rather than program complexity measures such as cyclomatic complexity, number of decision nodes etc. but the
statement needs more experimentation before generalization.

6. Conclusion
We have compared four heuristic based techniques BBBC, ABC, PSO and GA for automatic test case
generation using path testing criterion. For generation of test cases, symbolic execution method has been used in
which first, target path is selected from CFG of SUT and then inputs are generated using search algorithms
which can evaluate composite predicate corresponding to the target path true. We have experimented on ten real
world programs showing the applicability of swarm intelligence techniques in genuine testing environment.
PSO method has given excellent results for each test object except binary search method however it still
outperforms other two methods. PSO’s performance in small as well as large domains shows that it has both
type of search capabilities; local as well as global for fulfilling testing requirements. Hence, it has been observed
to be ideally suited for test case generation problem. A direct relationship between number of equality
constraints and testing efforts has been identified.

Reference
[1] Edvardsson J. A survey on automatic test data generation In Proceedings of the second conference on

computer science and engineering, Linkoping: ESCEL; October 1999; 21–28.
[2] McMinn P. Search-based Software Test Data Generation: A Survey. Software Testing, Verification and

Reliability June 2004; 14(2):105-156.
[3] Amoui M, Mirarab S, Ansari A and Lucas C, A Genetic Algorithm Approach to Design Evolution using

Design Pattern Transformation, International Journal of Information Technology and Intelligent Computing
1(2, 2006 pp. 235-244.

[4] Korel B. Automated software test data generation. IEEE transaction on software engineering, 1990;
16(8):870-879.

[5] Wegener J, Baresel A, Sthamer H., “Evolutionary test environment for automatic structural testing”.
Information and Software Technology 43, 841–54, 2001;

[6] Ahmed MA, Hermadi I. GA-based multiple paths test data generator. Computers and Operations Research
(2007)

[7] Watkins A, Hufnagel E. M. Evolutionary test data generation: a comparison of fitness functions. Software
Practice & Experience 2006; 36:95–116

Correlation=������� Correlation=��������

Correlation=������	� Correlation=������	

